
Generation of Equivalent Circuit from Finite Element Model of 

Electromagnetic Devices Using Proper Orthogonal Decomposition 
 

Toshihito Shimotani, Yuki Sato and Hajime Igarashi, Member IEEE  

 

Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0184, Japan 

simotani@em-si.eng.hokudai.ac.jp 

 

This paper presents generation of equivalent circuits from finite element (FE) model of electromagnetic devices using proper 

orthogonal decomposition (POD). This method effectively computes the frequency response of the reduced FE model which is constructed 

by POD-based model order reduction. Then the lumped parameters for the equivalent circuit are determined so as to minimize the error 

between the frequency responses of the reduced FE model and circuit. The frequency characteristics of a 3D inductor evaluated by the 

equivalent circuit are shown to be in good agreement with those computed from the original FE model. 

 

Index Terms— Equivalent circuits, finite element analysis, reduced order systems. 

 

I. INTRODUCTION 

INITE element (FE) analysis has widely been performed for 

design of electric machines and devices. However, due to its 

long computational time, equivalent circuits are frequently used 

rather than FE analysis for design of driving and control circuits. 

To obtain equivalent circuits for motors, for example, lumped 

parameters are determined from loss and inductances computed 

by FE analysis [1]. It would be, however, difficult to obtain 

accurate frequency characteristics over a wide range using this 

conventional method. 

Recently the equivalent circuit of ladder configuration has 

been directly generated from the analytical expression of an 

eddy current problem for thin iron sheets [2]. It is shown that 

the discrepancy between the frequency characteristics of the 

generated equivalent circuit and the analytical solution can be 

reduced by increasing the number of ladder stages. Now a 

question arises, is it possible to generate the equivalent circuit 

not from the analytical solutions which can be obtained only to 

simple problems but from FE models? The equivalent circuits 

of FE models could be generated if its frequency characteristics 

are available. However, one needs long computational time to 

obtain frequency characteristics of large FE models.  

In this paper, we propose a generation method of equivalent 

circuit of FE models using model order reduction (MOR) base 

ond proper orthogonal decomposition (POD) [3]. In this method, 

the computational time necessary for FE analysis can be 

reduced by POD-based MOR. The frequency response of the 

FE models is thus effectively computed for the circuit 

generation. The lumped parameters in the circuit are determined 

so as to minimize the error between the frequency responses of 

the reduced FE model and circuit.  

We apply the present method to three dimensional inductor 

model and compare the accuracy and computational time of the 

resultant equivalent circuit with those of the original FE model. 

II. PROPER ORTHOGONAL DECOMPOSITION 

Let us consider the FE equation in the frequency-domain, 
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where KRnn, xRn, bRn and  are FE matrix, solution 

vector, source vector and angular frequency, respectively. 

We solve (1) at s snapshot points to construct the data 

matrix X 
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The singular value decomposition applied to X results in 
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where i is ith eigenvalue of X, 1 ≤ i ≤ s, and wi, vi are the 

eigenvectors of XXt and XtX, respectively. The solution x can 

be approximately expressed by the linear combination of the 

eigenvectors, that is, x=Wy where yRs. Thus (1) becomes 

)j(WW)j(KW tt  by   (4) 

The snapshot number s is set much smaller than n so that one 

solves (4) much faster than (1) at the sampling points to obtain 

the frequency response. 

III. GENERATION OF EQUIVALENT CIRCUIT 

Next, we generate the equivalent circuit from the frequency 

response computed by POD-based MOR. We employ here 

Foster and Cauer circuits shown in Fig. 1 [4]. In Foster circuit, 

the admittance Y(j) is expressed by 
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where Rk, Lk and q are resistance, inductance and number of the 

stage of the ladder circuit, respectively. In the Cauer circuit, the 

impedance Z(j) is expressed in a form of continued fraction as 
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To determine the lumped parameters R1,…, Rq and L1,…, Lq 

in the equivalent circuit, we introduce the optimization problem 

defined by 
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where R = [R1, R2, …, Rq], L = [L1, L2, …, Lq], GFEM(ji), 

G(ji,R,L) are obtained from reduced equation (4) and its 

equivalent circuit and M is the number of sampling points. The 

optimization problem (7) is solved here by the real coded 

genetic algorithm (RGA). 

IV. NUMERICAL RESULTS 

We consider the three dimensional inductor model shown in 

Fig. 2 connected to the simple circuit shown in Fig. 3 where 

electrical conductivity , relative permeabilityr, R and L are 

set to 5106 S/m, 10, 10-5  and 10-15 H. The numbers of 

snapshots s and frequency sampling points M are set to 3 and 

11, respectively.  

The frequency characteristics of the current obtained from 

the original FE model and the present method for different 

number of ladder stages q are shown in Figs. 4 and 5. In both 

circuits, the results of the present method are in good agreement 

with those of FE model when q≥3. The computational time for 

generation of the both circuits is found to be about 25% of that 

generated from original FE model. 

TABLE I shows the resultant lumped parameters in both 

circuits when q=5. 
TABLE I 

CIRCUIT PARAMETER 

 

V. CONCLUSION 

In this paper, we have proposed a generation method of 

equivalent circuits from reduced FE models. We have applied 

the present method to three dimensional inductor model. The 

proposed method has been shown sufficiently accurate for this 

example when q≥3. This present method can be applied not 

only to Foster and Cauer circuits, but also more complex 

circuits, such as, lumped element equivalent circuit [5] for 

antennas, which will be discussed in the full paper. 
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(a) Forster circuit      (b) Cauer circuit 

Fig. 1. Equivalent circuits  
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Foster circuit 

R0[] R1[] R2[] R3[] R4[] 

1.4310-4 1.6410-4
 3.3110-4 1.2210-5 5.1910-4 

L0[H] L1[H] L2[H] L3[H] L4[H] 

6.2510-7 7.1610-8 1.7810-8 3.7110-8 2.1810-6 

Cauer circuit 

R0[] R1[] R2[] R3[] R4[] 

5.1510-5 3.4610-5 2.3810-5 1.0310-4 4.0710-3 

L0[H] L1[H] L2[H] L3[H] L4[H] 

1.4110-8 2.0810-8 7.0710-12 2.0010-7 3.5610-9 

 

 
Fig. 2. Inductor model 

 
Fig. 3. Circuit including finite element model 
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Fig. 4. Current-Frequency (Foster) 

 
Fig. 5. Current-Frequency (Cauer)  
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